Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

N-(8-Quinolyl)pyridine-2-carboxamide

Junyong Zhang, Qin Liu, Yan Xu, Yong Zhang, Xiaozeng You and Zijian Guo*
Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
Correspondence e-mail: zguo@netra.nju.edu.cn

Received 15 September 2000
Accepted 23 October 2000

The title compound, $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$, is basically planar except that the pyridine ring is slightly titled, the dihedral angle between the pyridyl and quinolyl rings being $3.55(5)^{\circ}$. The crystal grows in two directions and the crystal packing is stabilized by $\pi-\pi$ stacking interactions.

Comment

Quinoxaline derivatives, such as XK469, showed unusual solid-tumor selectivity and activity against multidrug-resistant cancer cells (Gao et al., 1999). Some platinum complexes of pyridine and quinoline ligands, such as trans-dichlorodipyridineplatinum(II) and trans-amminedichloroquinolineplatinum(II), show comparable anticancer activity to cisplatin in cisplatin-sensitive and -resistant cell lines (Wong \& Giandomenico, 1999). Moreover, some metallo-intercalators have been widely used in DNA structural and mechanistic studies (Erkkila et al., 1999). Aminoquinoline-based ligands possess a strong fluorescent property which could be used as a probe for

(I)

DNA binding (Fahrni \& O'Halloran, 1999; Nasir et al., 1999). Therefore, we synthesized the title compound, (I), in order to investigate the binding ability of this aminoquinoline-based ligand towards metal ions and DNA. The ligand contains pyridine, amide and quinoline N atoms which are able to coordinate to metal ions, such as $\mathrm{Zn}^{\mathrm{II}}$ and $\mathrm{Cu}^{\mathrm{II}}$ (Fahrni \& O'Halloran, 1999; Nasir et al., 1999; Amendola et al., 1999). Studies of the metal complexes of (I) will be reported elsewhere.

The X-ray crystallographic study shows that the bond lengths and angles are within the normal ranges. The N2-C6 and $\mathrm{N} 2-\mathrm{C} 7$ bond distances in (I) are comparable with those in [N, N^{\prime}-bis(2-pyridinecarboxamido)-1,2-benzene]copper(II) [1.337 (3) and 1.404 (2) A; Chapman et al., 1980] and N, N^{\prime} -(4,5-dichloro-o-phenylene)bis(4-tert-butylpyridine-2-carboxamide) [1.350 (4) and 1.401 (4) \AA; Fun et al., 1999], while the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}=\mathrm{O}$ bond lengths are similar to those reported in [N, N^{\prime}-bis(2-pyridinecarboxamide)-1,2-benzene]nickel(II) monohydrate (Stephens \& Vagg, 1986). The molecule of (I) is almost planar, except that the pyridyl ring is slightly tilted, the dihedral angle between the pyridyl and quinolyl rings being $3.55(5)^{\circ}$. There are four intramolecular hydrogen bonds in the crystal (see Table 2) which could be the driving force to have N 1 and N 3 in the same side of the molecule.

Figure 1
The structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.

The crystal is a thin plate and grows in two different directions which cross each other, and the angle between these two orientations is 60.8°. There is a $\pi-\pi$ stacking interaction between adjacent molecules packed in the same direction. The distance between two adjacent parallel aromatic rings [$\mathrm{C} 1-\mathrm{C} 5 /$ N 1 and $\mathrm{C} 7^{\mathrm{i}}-\mathrm{C} 11^{\mathrm{i}} / \mathrm{C} 15^{\mathrm{i}}$; symmetry code: (i) $\left.1-x, 2-y,-z\right]$ is $3.68(2) \AA$, and the shortest distance is $\mathrm{C} 2 \cdots \mathrm{C} 9^{\mathrm{i}}$ of 3.481 (4) \AA. This kind of interaction belongs to the face-toface type, with a little offset, and the molecules are arranged in a head-to-tail fashion, i.e. the pyridyl group faces the quinoline group.

In order to understand the electron-donating ability of the three N atoms, $a b$ initio calculations (HF/3-21g* method) using GAUSSIAN98 (Frisch et al., 1998) were carried out. This gave rise to electron-distribution values of $-0.731 \mathrm{e},-1.095 \mathrm{e}$ and -0.746 e for $\mathrm{N} 1, \mathrm{~N} 2$ and N 3 , respectively.

Experimental

The title compound was obtained by the reaction of one molar equivalent of pyridine-2-carboxylic acid and 8 -aminoquinoline in the presence of one molar equivalent of triphenyl phosphite in pyridine at 473 K for 4 h (Leung et al., 1991). Single crystals suitable for X-ray diffraction were recrystallized from pyridine and ethanol.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$
$M_{r}=249.27$
Monoclinic, $P 2_{1} / n$
$a=7.677$ (2) A
$b=7.915$ (3) \AA
$c=20.408(5) \AA$
$\beta=99.64$ (2) ${ }^{\circ}$
$V=1222.5(6)$ A 3
$Z=4$
$D_{x}=1.354 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 41
\quad reflections
$\theta=5.15-15.12^{\circ}$
$\mu=0.089 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Thick plate, colorless
$0.50 \times 0.50 \times 0.40 \mathrm{~mm}$

Data collection

Siemens $P 4$ diffractometer
$2 \theta / \omega$ scans
Absorption correction: empirical (North et al., 1968)
$T_{\text {min }}=0.956, T_{\text {max }}=0.965$
3082 measured reflections
2149 independent reflections
1406 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\mathrm{int}}=0.026 \\
& \theta_{\max }=25^{\circ} \\
& h=-1 \rightarrow 9 \\
& k=-1 \rightarrow 9 \\
& l=-24 \rightarrow 24 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \quad \text { intensity decay: } 7.12 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.122$
$S=1.073$
2149 reflections
172 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

O1-C6	$1.223(2)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.401(2)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.327(3)$	$\mathrm{N} 3-\mathrm{C} 14$	$1.314(2)$
N1-C5	$1.335(2)$	$\mathrm{N} 3-\mathrm{C} 15$	$1.368(2)$
N2-C6	$1.357(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.498(3)$
C1-N1-C5	$116.9(2)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$119.8(2)$
C6-N2-C7	$129.3(2)$	$\mathrm{O} 1-\mathrm{C} 6-\mathrm{N} 2$	$124.4(2)$
C14-N3-C15	$117.1(2)$	$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 5$	$121.7(2)$
N1-C5-C6	$117.0(2)$	$\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 5$	$113.9(2)$

All H atoms were placed in geometrically calculated positions $(\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA)$, with $U_{\text {iso }}=1.2 U_{\text {eq }}$ (parent atom).

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997); program(s) used to solve structure: $\operatorname{SHELXTL}$; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was funded by the National Natural Science Foundation of China. The authors thank Professor Chun-Ying

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{~N} 1$	0.86	2.21	$2.653(2)$	112
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{~N} 3$	0.86	2.24	$2.659(2)$	110
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{O} 1$	0.93	2.56	$2.833(3)$	97
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{O} 1$	0.93	2.33	$2.923(3)$	121

Duan and Mr Yong-Jiang Liu (Coordination Chemistry Institute, Nanjing University) for the X-ray structure determination.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1484). Services for accessing these data are described at the back of the journal.

References

Amendola, V., Fabbrizzi, L., Linati, L., Mangano, C., Pallavicini, P., Pedrazzini, V. \& Zema, M. (1999). Chem. Eur. J. 5, 3679-3688.

Chapman, R. L., Stephens, F. S. \& Vagg, R. S. (1980). Inorg. Chim. Acta, 43, 29-33.
Erkkila, K. E., Odom, D. T. \& Barton, J. K. (1999). Chem. Rev. 99, 2777-2795.
Fahrni, C. J. \& O’Halloran, T. V. (1999). J. Am. Chem. Soc. 121, 11448-11458.
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Montgomery, J. A. Jr, Stratmann, R. E., Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Baboul, A. G., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Andres, J. L., Gonzalez, C., Head-Gordon, M., Replogle, E. S. \& Pople, J. A. (1998). GAUSSIAN98. Revision A.7. Gaussian Inc., Pittsburgh, PA, USA.
Fun, H.-K., Chinnakali, K., Razak, I. A., Shen, Z., Zuo, J.-L. \& You, X.-Z. (1999). Acta Cryst. C55, 99-100.

Gao, H.-L., Huang, K.-C., Yamasaki, E. Y., Chan, K.-K., Chohan, L. \& Snapka, R. M. (1999). Proc. Natl Acad. Sci. USA, 96, 12168-12173.

Leung, W. H., Ma, J. X., Yam, V. W. W., Che, C. M. \& Poon, C. K. (1991). J. Chem. Soc. Dalton Trans. pp. 1071-1076.
Nasir, M. S., Fahrin, C. J., Suhy, D. A., Kolodsick, K. J., Singer, C. P. \& O'Halloran, T. V. (1999). J. Biol. Inorg. Chem. 4, 775-783.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1994). SHELXTL-Plus. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madision. Wisconsin, USA.
Stephens, F. S. \& Vagg, R. S. (1986). Inorg. Chim. Acta, 120, 165-171.
Wong, E. \& Giandomenico, C. M. (1999). Chem. Rev. 99, 2451-2466.

